蓝绿光单频激光器研究进展

彭秀林^{1,2},杨昌盛^{2,3}*,邓华秋^{1,2},谭天奕^{2,3},关先朝^{1,2},赵齐来^{2,3},冯洲明^{2,3,4},徐善辉^{1,2,3,4}

1华南理工大学物理与光电学院,广东 广州 510640;

²华南理工大学发光材料与器件国家重点实验室,广东 广州 510640;

³广东省特种光纤材料与器件工程技术研究开发中心,广东 广州 510640;

4广东省光纤激光材料与应用技术重点实验室,广东 广州 510640

摘要 蓝绿光波段激光在激光显示、医疗诊断、光学数据存储以及水下通信等方面有着广阔的应用前景。尤其是 蓝绿光单频激光具有较高的相干性,可广泛应用于高分辨率光谱、原子冷却和俘获、量子光学等领域,吸引了国内 外学者的极大关注,发展十分迅速。本文介绍了实现蓝绿光单频激光的几种关键技术——二次谐波产生(SHG)手 段获得蓝绿光单频激光、半导体材料直接激射产生蓝绿光单频激光等,总结了蓝绿光单频激光器的研究现状和发 展方向。此外,结合本课题组在光纤基蓝绿光单频激光器方面的研究工作,着重介绍了基于近红外短波单频光纤 激光器通过 SHG 手段获得蓝绿光单频激光的研究进展,并对蓝绿光单频激光技术的发展进行了展望。

关键词 激光光学; 蓝绿光; 单频; 光纤激光; 二次谐波产生

中图分类号 O439 文献标志码 A

doi: 10.3788/LOP57.071606

Research Progress of Blue-Green Single-Frequency Laser

Peng Xiulin^{1,2}, Yang Changsheng^{2,3*}, Deng Huaqiu^{1,2}, Tan Tianyi^{2,3}, Guan Xianchao^{1,2}, Zhao Qilai^{2,3}, Feng Zhouming^{2,3,4}, Xu Shanhui ^{1,2,3,4}

¹ School of Physics and Optoelectronics, South China University of Technology,

Guangzhou, Guangdong 510640, China;

² State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China;

 3 Guangdong Engineering Technology Research and Development Center of Special Optical Fiber

 $Materials \ and \ Devices \ , \ Guangzhou \ , \ Guangdong \ 510640 \ , \ China \ ;$

⁴ Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South

China University of Technology, Guangzhou, Guangdong 510640, China

Abstract Blue-green lasers have a broad application prospect in laser display, medical diagnosis, optical data storage, and underwater communication. In particular, the blue-green single-frequency laser has high coherence and can be used in fields such as high-resolution spectroscopy, atomic cooling/capture, and quantum optics, which have attracted extensive attention of scholars at home and abroad and developed rapidly. In this paper, several key technologies of realizing blue-green single-frequency lasers are introduced, such as second harmonic generation (SHG) to obtain blue-green single-frequency lasers, and directly lasing from semiconductor materials. The research status and development direction of the blue-green single-frequency laser are summarized. In addition, according to the research work of our group in the fiber-based blue-green single-frequency laser, the research progress of obtaining blue-green single-frequency lasers through SHG technology based on near-infrared shortwave single-frequency laser technology is prospected.

Key words laser optics; blue-green laser; single-frequency; fiber laser; second harmonic generation

收稿日期: 2020-01-03; 修回日期: 2020-02-25; 录用日期: 2020-03-06

基金项目:国家自然科学基金(11674103,61635004,61535014)、广东省自然科学基金(S20120011380)

^{*} E-mail: mscsyang@scut.edu.cn

OCIS codes 140.7300; 140.3570; 140.3510; 140.3515

1引言

蓝绿光波段激光在激光显示、医疗、工业加 工、国防等领域具有重要的应用前景,如高密度数 据存储、海底通信、大屏幕显示及激光医疗等。尤 其蓝绿光单频激光具有较高的相干性,是高分辨 率和精密光谱学、光频率标准和时钟、原子冷却和 俘获、量子光学和量子信息等应用领域的重要光 源^[1-4]。此外,蓝绿光波段激光的工作波长集中在 450~570 nm 范围内,可以通过非线性频率转换 产生更短波长,如深紫外激光,近年来成为了激光 器领域的研究热点。

传统技术实现蓝绿光激光输出一般是通过氩离 子激光器,但这种气体激光器存在着体积大、寿命 短、工作不稳定等缺点,且以连续方式工作,较难通 过激光调制技术获得较高的峰值功率。尽管通过半 导体材料可以直接激射蓝绿光激光,但是存在谱线 宽和输出功率低等缺点。相比而言,光纤激光器作 为一种新型的固体激光器,具有光束质量好、泵浦效 率高、体积小、工作稳定等优点。因此,通过对近红 外短波光纤激光器直接进行二次谐波产生(SHG) 来获得可见光(红光、绿光、蓝光等)激光输出是一种 行之有效的技术手段^[57]。

单频(单一纵模的形式输出)激光不仅具有一般 激光器的优点,还具有输出线宽窄和噪声低等特点, 近年来国际上一些研究机构相继开展了单频激光器 的研究^[8-13]。实现蓝绿光单频激光的方式有多种, 其中最主要的方法如下:利用非线性光学效应(如光 参量振荡、拉曼效应、二倍频、三倍频等)产生蓝绿光 单频激光、半导体材料直接激射产生蓝绿光单频激 光等,但由于蓝绿光单频激光的相关研究工作较少, 所以本文主要介绍了通过 SHG 手段产生蓝绿光单 频激光以及半导体材料直接激射产生蓝绿光单频激 光这两种方法。

近些年,本课题组在工作波长涵盖 978~ 1120 nm单频光纤激光器^[14-20]以及光纤基蓝光、绿 光单频激光器^[21-22]等研制方面取得了一些研究进 展。本文总结了蓝绿光单频激光器的研究现状和发 展方向,同时结合本课题组在光纤基蓝绿光单频激 光器方面的研究工作,着重介绍了基于近红外短波 单频光纤激光器通过 SHG 手段获得蓝绿光单频激 光的国内外研究进展,并对蓝绿光单频激光技术的 发展动向进行了展望。

2 SHG 手段产生蓝绿光单频激光

1961年,Franken等^[23]发现,在红宝石激光器 内插入石英晶体,让光束通过该晶体时,得到了紫 外光,其激光频率变为原来的两倍。1962年, Terhune等^[24]又把方解石晶体置于红宝石激光 内,最后得到了三次谐波产生。随后,一系列的非 线性光学效应开始被人们所观察。典型的非线性 光学效应有光克尔效应、非线性折射效应、多波混 频效应等^[25]。当两束同频率的光同时入射到非线 性晶体介质中,满足相位匹配条件后,产生二倍频 率激光输出,这就是光学二倍频效应也即 SHG。 倍频效应是多波混频效应中非常重要的一部分, 利用该效应是获得蓝绿光激光输出最常用的方 法,具有非常重要的意义。

在 SHG 过程中,非线性晶体是实现频率转换 的重要组成部分,其有效非线性系数、透光率、相位 匹配类型、相位匹配角度、温度接受带宽等参数均是 影响频率转换优劣的关键因素,也同时左右着对应 不同频率转换下非线性晶体的选取^[26]。另外,在具 体实验中还需要考虑使用环境、晶体损伤阈值、走离 效应等因素的影响。

根据所用的非线性晶体和实验条件的不同,可采 取不同的 SHG 装置结构。主要包括:外腔单程 SHG 结构、外腔共振增强 SHG 结构和内腔 SHG 结构,装 置结构示意图分别如图 1(a)~(c)所示。虽然内腔 SHG 结构利用基频激光谐振腔中的高能量密度可以 得到较高的转换效率,但此方法在激光谐振腔中同时 存在基频光振荡产生过程和非线性 SHG 过程,导致 装置调试较困难,且 SHG 输出激光有较大的功率波 动。所以,外腔单程 SHG 结构是最简单的方式,其可 以最大限度地降低系统复杂程度和成本^[27-28]。

因此,基于 0.9~1.1 μm 波段近红外短波激光 (基频光源)的 SHG 过程是获得良好光束质量、蓝 绿光波段激光输出非常有潜力的方法之一,其有效 地保留了基频激光的固有输出性能。其中基频光源 主要包括近红外短波固体激光器、半导体激光器与 光纤激光器,下面将逐一介绍基于这些基频光源进 行 SHG 的技术手段,主要介绍利用单频光纤激光 器作为基频光源进行 SHG 获得蓝绿光单频激光的 发展现状。

图 1 三种不同的 SHG 装置结构示意图。(a)外腔单程;(b)外腔共振增强;(c)内腔^[21]

Fig. 1 Schematic diagram of three different SHG structures. (a) Single-pass of external cavity; (b) resonant enhancement of external cavity; (c) intracavity^[21]

2.1 基于固体激光基频光源的 SHG

作为基频光源的近红外短波固体激光器主要有 掺钕钇铝石榴石(Nd:YAG)激光器、钛蓝宝石(Ti: sapphire)激光器等。基于固体激光基频光源的外 腔 SHG 实验,一般要锁定基频光源的激光频率来 获得稳定的蓝绿光激光输出,从而增加了激光系统 的复杂性。因此,在Nd:YAG激光器和Ti: sapphire 激光器的单频谐振腔中插入非线性晶体, 通过内腔 SHG 来获得蓝绿光单频激光输出,相对 来说结构更加紧凑。早在 1995 年, Wiechmann 等^[29]使用磷酸钛氧钾(KTP)晶体对掺钕钒酸钇 $(Nd: YVO_4)$ 激光器进行内腔 SHG,实现了功率 1 W的 532 nm 绿光单频激光输出,其光光转换效率 高达 25%。1996 年, Martin 等^[30] 使用 KTP 晶体对 Nd:YAG 激光器进行内腔 SHG,获得了功率 3 W 的 532 nm 绿光单频单横模激光输出。2013 年, Lu 等[31] 使用三硼酸锂(LBO) 晶体对 Nd: YAG 激光器 进行内腔 SHG,获得了重复频率为1 kHz、脉冲能 量为 6.4 mJ 的 532 nm 绿光单频脉冲激光,其光光 转换效率为12.7%。

2015年,Li 等^[32]使用硼酸铋(BIBO)晶体对 Ti:sapphire激光器进行内腔 SHG,获得了低强度噪 声、功率 421 mW、可调谐范围 3.4 GHz 的 455.5 nm 蓝光单频激光输出,其强度噪声在 1.8 MHz 处达到 了量子噪声极限。同年,Li 等^[33]再次报道了使用周 期极化 KTP (PPKTP)晶体对 Ti:sapphire 激光器 进行内腔 SHG,实现了功率 1.05 W、光束质量因子 小于 1.1、线宽小于 590 kHz、对应于锶原子吸收线 的可调谐 460.86 nm 蓝光单频激光输出,其实验装 置图如图 2 所示。通过调节平面镜上的压电陶瓷, 实现了频率可调谐范围为 15.756 GHz。此外,研究 者还分析了 PPKTP 晶体的热透镜效应对 Ti: sapphire 晶体上激光束腰半径的影响,并优化了腔 镜的曲率半径,最后设计并构建了对 PPKTP 晶体 的热透镜效应不敏感的 Ti:sapphire 激光谐振腔。

2019年,Li等^[34]使用LBO 晶体对Ti:sapphire 激光器进行内腔SHG,实现了功率1W、功率稳定 性优于±0.27%@3h的455nm蓝光单频激光输 出,其光光转换效率为7.4%。研究者采用直接调制 锁定技术锁定腔内标准具,实现了激光器的连续频 率调谐范围为32GHz。

然而,一般钛宝石激光器需要高功率全固态绿 光激光器进行泵浦,所以激光器系统比较复杂、维护 较困难。由于 Nd: YAG 具有良好的光学质量、高的 热导率和较大的基态斯塔克(Stark)效应,目前获得 紧凑型蓝光激光器的工作主要集中在 Nd: YAG 激 光器的 SHG 方面。2010 年,Wang 等^[35]报道了使用 PPKTP 晶体对 Nd: YAG 激光器进行内腔 SHG,实 现了功率 1 W 的 473 nm 蓝光单频激光输出,其实 验装置图如图 3 所示。

通常而言,内腔 SHG 效率较高,但此方法在激 光谐振腔中同时存在基频光振荡产生过程和非线性 SHG 过程,导致装置调试较困难,以及 SHG 输出激 光有较大的功率波动,而外腔共振增强SHG能够

Fig. 2 Experimental setup of the intracavity SHG single-frequency Ti: sapphire/PPKTP blue laser^[33]

Fig. 3 Experimental setup of the diode-end pumped intracavity SHG single-frequency Nd: YAG blue laser[35]

弥补这个缺点,同样能够获得较高的 SHG 转换效率。2010年, Meier 等^[36]利用 LBO 晶体和外腔谐振增强 SHG 结构,获得了功率高达 134 W 的532 nm绿光单频激光输出,其光光转换效率高达90%,其实验装置图如图 4 所示。

2.2 基于半导体激光基频光源的 SHG

半导体激光器是一种结构紧凑、性能可靠、成本 低廉的光源,可以广泛应用于各种光学领域^[37-38]。 可以使用非线性晶体对近红外短波单频半导体激光 器进行 SHG,从而获得蓝绿光单频激光输出。

2009年,Jensen等^[39]报道了使用周期极化铌酸锂(PPLN)晶体对 1062.3 nm 单频锥形半导体激 光器进行外腔单程 SHG,实现了功率 1.58 W 的 531 nm 绿光单频激光输出,其光光转换效率为 18.5%。2016年,Zhang等^[40]使用 PPKTP 晶体对 894.6 nm 放大增强型锥形半导体激光器进行外腔 单程 SHG,实现了功率 178 mW 的连续可调谐 447.3 nm蓝光单频激光输出,其光光转换效率为 50.8%。 由于晶体材料制作工艺的限制,导致一般单一 晶体典型长度小于 50 mm(晶体的长度和非线性系 数等直接影响了转换效率),因此依赖多晶体(即使 用两个或两个以上的晶体)级联 SHG 是一种非常 有潜力的实现方式,可以用于提高外腔单程 SHG 的转换效率^[41-42]。2017年,Jensen等^[43]将1030 nm 高功率单频锥形半导体激光器作为基频光源进行掺 MgO PPLN(MgO: PPLN)和掺 MgO 近化学计量 比周期极化钽酸锂(MgO: sPPLT)双晶体级联外腔 单程 SHG,获得了功率 3.5 W、线宽小于 2 pm、功率 稳定性优于±0.4%的 515 nm 绿光单频激光输出, 且避免了高功率下 MgO: PPLN 晶体中通常存在的 热效应问题。其实验装置图如图 5 所示。

2.3 基于光纤激光基频光源的 SHG

作为基频光源的近红外短波光纤激光器主要有掺 镱(Yb³⁺)光纤激光器以及掺钕(Nd³⁺)光纤激光器。将 光纤激光器作为 SHG 产生蓝绿光单频激光的基频光 源,有效地保留了光纤激光器固有的诸多优点,如光束 质量好、结构紧凑、热管理方便、易于调谐等。

图 4 532 nm 绿光单频激光器外腔谐振增强结构实验装置图^[36]

Fig. 4 Experimental setup of external resonator enhancement structure of 532 nm green single-frequency laser^[36]

2008 年,Sinha 等^[44]使用周期极化钽酸锂晶体 (PPLT)对掺 Yb³⁺光纤主振荡功率放大器 (MOPA)进行外腔单程 SHG,获得了近衍射极限、 功率 18.8 W 的 532 nm 绿光单频激光输出,其光束 质量因子 M_x^2 =1.19 和 M_y^2 =1.05,系统的整体光学 效率为 15%。2009 年,Samanta 等^[45]使用 30 mm 长的 MgO: sPPLT 对29.5 W 的 1064 nm 掺 Yb³⁺ 光纤激光器进行外腔单程 SHG,实现了功率9.64 W 的 532 nm 绿光单频激光,光光转换效率为 32.7%。

2011年,Kumar 等^[46]使用多个 MgO:sPPLT 晶体对30 W 的 1064 nm 掺 Yb³⁺光纤激光器进行 多晶体级联外腔单程 SHG,分别在双晶体和三晶体 SHG 下获得了输出功率 13 W 和 6.1 W 的 532 nm 绿光单频激光输出,光光转换效率分别为 54.8%和 56%,其实验装置图如图 6 所示。研究者对单晶 (SC)、双晶(DC)以及多晶(MC)实验方案进行了系 统的分析,并对结果进行了比较,如表 1 所示(OT 表示 Open-top,CT 表示 Close-top)。比较发现,双 晶和三晶 SHG 的方案与单晶 SHG 的方案比较起来,光束质量变差。研究者分析其原因可能为:相较 于单晶 SHG 的方案,在多晶 SHG 的方案中,平凹 镜的使用数量增多,并且由于在平凹镜的调节过程 中与法向入射角有较小的角度偏差,从而导致了光 束质量的一步步变差。并且,研究者对每级 SHG 的聚焦和相位匹配温度等关键参数进行了优化,以 实现最大转换效率。

图 6 多晶体单程 SHG 实验装置图^[46]

Fig. 6 Experimental setup of the multicrystal single-pass SHG^[46]

表1 多晶体单程 SHG 实验结果总结^[46]

Table 1 Summary of multicrystal single-pass SHG results^[46]

Denemeter	Scheme			
r arameter –	SC	DC	MC	
Crystal length /mm	30	60	90	
Beam waist /µm	$\omega_1 \sim 30$	$\omega_1 \sim 30$, $\omega_2 \sim 46$	$\omega_1 \sim 30$, $\omega_2 \sim 46$, $\omega_3 \sim 80$	
Oven configuration	OT	CT-OT	CT-CT-OT	
Highest SHG conversion efficiency / $\%$	32.7	54.8	56	
Low power normalized SHG	1.4	-	7 0	
conversion efficiency / ($\%/W$)	1.4	G	7.8	
M^2 value	<1.29	<1.6	<1.6	

2015年, Shukla 等^[47]分别使用掺 MgO 同成 分 PPLT(MgO: cPPLT)晶体和 MgO: sPPLT 晶体 对40 W 的 1064 nm 掺 Yb³⁺光纤激光器进行外腔 单程 SHG, 其实验装置图如图 7 所示。从 50 mm 长的 MgO: cPPLT 和 30 mm 长的 MgO: sPPLT 晶 体中分别获得了功率8.5 W 和 14.5 W 的 532 nm 绿光单频激光输出,其光光转换效率分别为 24% 和 36%、线宽分别为 12 MHz 和 5 MHz。实验结 果表明,在 MgO:cPPLT 晶体中的热退相效应较 MgO:sPPLT 明显,导致了在 MgO:cPPLT 晶体 中,当泵浦功率大于 20 W 时其 SHG 效率就已经 出现饱和。

图 7 1064 nm 单频掺 Yb³⁺ 光纤激光单程 SHG 实验装置图^[47] Fig. 7 Experimental setup for single-pass SHG of 1064 nm single-frequency Yb³⁺-doped fiber laser^[47]

2018年,Qian 等^[48]为了研究铯里德堡原子,报 道了一种低噪声 509 nm 绿光单频激光器。使用 25 mm长的 MgO: PPLN 晶体对 10.04 W 的 1018 nm掺 Yb³⁺光纤放大器进行外腔单程 SHG, 获得了功率 2.03 W 的 509 nm 绿光单频激光输出, 其光光转换效率为 20.2%。根据 1018 nm 基频光

源测量的线宽 20 kHz,估算出绿光的线宽为 40 kHz。在小于1 MHz 频率范围内,绿光的相对 强度噪声(RIN)均有良好表现。该绿光单频激光器 的窄线宽和低强度噪声特性是研究铯里德堡原子的 理想工具。

除了掺 Yb3+ 单频光纤激光器可作为 SHG 产

生蓝绿光单频激光的理想基频光源之外,掺 Nd³⁺单 频光纤激光器(工作波长 910~1060 nm)也是主要 的基频光源之一^[49-51],通过 SHG 手段能够获得更 短的蓝光单频激光(蓝光波长范围 400~480 nm), 即更加纯净的蓝光。

SHG 的输出功率和转换效率一般受到基频光 源功率的限制,为了避免基频光功率的制约,可以通 过相干合成技术提高基频光源的功率规模。2018 年,Erbert 等^[52]报道了通过对两个高功率锥形放大 器进行相干合束方法来提高 SHG 效率。与单个放 大器的 SHG 效率(η =2.5 %/W)相比,两个放大器 的相干合束方法提高了 SHG 效率(η =3.7 %/W)。 研究者使用 40 mm 长的 PPLN 晶体进行外腔单程 SHG,获得了近衍射极限($M_{4\sigma}^2 < 1.2$)、功率 1.8 W 的 488 nm 蓝光激光,其光光转换效率为 22%。研 究者认为实验结果证实了相干合成在非线性频率转 换应用中是一种有潜力的 SHG 效率提升技术。

2015年,本课题组的杨昌盛^[21]使用 PPLT 晶体对自制的 1064 nm 单频光纤激光器进行外腔单程 SHG,获得了功率 6.4 W、RIN 小于-140 dB/Hz 的 532 nm 绿光单频激光输出,其光光转换效率达 29.8%。其 SHG 功率和转换效率与基频光功率的关系曲线图如图 8 所示。

2018年,本课题组的Yang等^[22]报道了一种超

- 图 8 SHG 功率和转换效率与基频光功率的关系曲线图 (插图为 SHG 功率与基频光功率平方的关系)^[21]
- Fig. 8 Measured SHG power and conversion efficiency versus fundamental power (Inset: SHG power versus square of the fundamental power)^[21]

紧凑和实用性设计的全光纤蓝光单频激光器,研究 者使用 PPLN 晶体对 978 nm 掺 Yb³⁺磷酸盐光纤 激光器进行外腔单程 SHG,获得了 68 mW 的窄线 宽 489 nm 蓝光单频激光输出,其光光转换效率达 30.3%,其实验装置如图 9 所示。根据基频光源的 线宽估算蓝光单频激光线宽小于 15 kHz。978 nm 掺 Yb³⁺磷酸盐光纤激光器具有超低噪声特性,通过 SHG 获得的蓝光激光在 20 MHz 以上的频率范围 内,测得的 RIN 小于-139 dB/Hz。作者认为通过 增加基频光源功率,可以进一步提高蓝光输出功率 和转换效率。

Fig. 9 Experiment setup of the ultra-compact all-fiber single-frequency blue laser^[22]

3 半导体材料直接激射产生蓝绿光单 频激光

半导体激光器也称为激光二极管(LD),以半导体材料作为工作物质,泵浦方式有电注入、电子束激励和光泵浦三种形式。半导体激光器由于其体积小、功耗低、可靠性高,且便于集成化,因而拥有极其

广泛的应用前景。蓝绿光半导体激光器常用的工作物质有氮化镓(GaN)、碳化硅(SiC)、硒化锌(ZnSe)等,其中GaN最为普遍使用^[53-55]。

由于半导体激光器的增益谱宽达数十纳米,因 此普通的法布里-珀罗(F-P)腔 LD 难以实现单频 (单一纵模)工作。一方面,利用光栅优越的选频特 性,将光栅和有源区结合在一起,这种可以实现单频 工作的激光器称为分布反馈半导体激光器(DFB-LD)、分布布拉格反射半导体激光器(DBR-LD)。 另一方面,将输出激光的一部分从腔外返回到 LD 的有源区中,具有纵模选择、线宽压缩等效果,这种 可以实现单频工作的复合腔结构称为外腔半导体激 光器(ECDL)。ECDL 具有多种反馈形式,包括平 面反射镜反馈、与 F-P 标准具结合的反馈、利用外 部选频元件(平面衍射光栅、光纤光栅、体布拉格光 栅、平面光波导光栅)反馈等,最常用的是利用布拉 格光栅反馈^[56]。

2017 年, Chen 等^[57] 报道了一种输出功率 40 mW、线宽10 MHz的氮化铟镓(InGaN)基可调 谐518 nm 绿光单频 ECDL,这也是首次报道的绿光 ECDL。2018 年, Chen 等^[58] 再次报道了一种 InGaN 基 520 nm 绿光半导体激光器。当所施加的 电流稍微超过阈值电流时,激光器就会激射毫瓦级 的绿光单频激光。研究者认为该方案具有较高的激 光稳定性和较窄的线宽,可以为绿光波段内的频率 标准提供可行的紧凑型频率参考系统。

2018年,Kang 等^[59]提出了基于 InGaN/GaN 多量子阱结构的 DFB-LD,获得了功率 46 mW 的 404.6 nm 蓝光单频脉冲激光输出。同年,Chen 等^[60]提出了一种波长可调的 InGaN 基 445 nm 蓝 光单频 ECDL,该激光器可实现最大输出功率 20 mW、线宽 4.7 MHz、波长调谐范围 4 nm 的蓝光 单频激光输出,其实验装置图如图 10 所示。随着施 加的电流增加,输出激光的线宽会变宽,而波长调谐 范围也会随之变窄。

GaN 基 LD 中泄漏到 GaN 衬底的光场会降低 光学增益峰值并削弱 LD 的输出性能,使得实现更 长波长的激射具有挑战性,这意味着研制 GaN 基绿 光 LD 的难度要比 GaN 基紫光和蓝光 LD 的难度更 高。2019年,Liang等^[61]提出了一种由梯度钢组成 的下波导层(LWG)结构,这种结构可以有效减少 GaN 基绿光 LD 中的光场泄漏,避免了使用厚 LWG。GaN 基绿光 LD 的基本结构如图 11 所示, 研究者设计了 13个具有不同 n 型的 Al_{0.08} Ga_{0.92} N 包层(nCL)和 LWG 的绿光 GaN 基 LD,其他结构 层固定不变,nCL 的厚度以及 LWG 的层组成和厚 度列于表 2。通过分析 13个不同 LD 的输出光学性 能,最终得出结论:使用梯度钢组成的 LWG 可有效 地将光场集中在有源区域周围,同时也有效地减少 了光场泄漏,绿光 LD 的光电性能得到了明显改善。 目前,在单频半导体激光器商业化方面,国际上 已经有德国 Toptica、美国 coherent 等公司研发与 推出了一系列的蓝绿光单频半导体激光器相关产 品。其中,后者成功推出的产品型号为 Sapphire SF (Single-Frequency) 488 和 Sapphire SF 532,其分 别输出 488 nm 蓝光单频激光和 532 nm 绿光单频 激光,输出功率 20~150 mW 不等。

4 增益光纤直接激射产生蓝绿光激光

自 20 世纪 90 年代以来,ZBLAN(ZrF₄-BaF₂-LaF₃-AlF₃-NaF)作为最稳定的重金属氟化物玻璃 和稀土离子的优良基质,因其固有损耗低、透明窗口 宽、声子能量小等优点,被广泛应用于高效、紧凑的 紫外、可见光和红外光纤激光器中,备受中外研究者 的关注。通过在氟化物玻璃中掺杂几种不同类型的

Fig. 11 Basic structure of GaN-based green laser diode^[61]

表 2 LD0-LD12 的 nCL 和 LWG 结构参数[61]

	Table 2	Structural	parameters	of	nCL	and	LWG
--	---------	------------	------------	----	-----	-----	-----

LD	Thickness	Layer constituent
name	of nCL $/\mu r$	n and thickness of LWG
LD0	1	n-GaN: 120 nm
LD1	1	$n-In_{0.05} Ga_{0.95} N$: 120 nm
LD2	2	$n-In_{0.05}Ga_{0.95}N$: 120 nm
LD3	3	$n-In_{0.05}Ga_{0.95}N$: 120 nm
LD4	4	$n-In_{0.05}Ga_{0.95}N$: 120 nm
LD5	1	$n-In_{0.05}Ga_{0.95}N$: 125 nm
LD6	1	$n-In_{0.05}Ga_{0.95}N$: 130 nm
LD7	1	$n-In_{0.05}Ga_{0.95}N$: 135 nm
LD8	1	$n-In_{0.05}Ga_{0.95}N$: 140 nm
LD9	1	$n-In_{0.05}Ga_{0.95}N$: 160 nm
LD10	1	$n-In_{0.05}Ga_{0.95}N$: 240 nm
LD11	1	n-GaN/ $In_{0.1}Ga_{0.9}N$ superlattice: 240 nm
LD12	1	Graded n-In _x Ga _{1-x} N: 240nm

稀土离子(如 Er³⁺、Ho³⁺、Pr³⁺、Tb³⁺等)已经成功

地获得了蓝绿光激光^[62-63]。早在 1992 年, Grubb 等^[64]第一次在掺 Tm³⁺ ZBLAN(Tm³⁺: ZBLAN) 光纤中获得了 60 mW 的 480 nm 蓝光激光输出,其 光光转换效率为 18%。随后 1995 年, Xie 等^[65]报 道了一台可见光波段的可调谐掺 Pr^{3+}/Yb^{3+} ZBLAN 光纤激光器,在 780~880 nm 的泵浦波长 下,可得到红光(635~675 nm)、黄光(605~ 622 nm)、绿光(517~540 nm)、蓝光(491~493 nm) 等不同可见光波段的激光输出。

2018年, Mollaee 等^[66]报道了首个单频单横模 输出的全光纤蓝光放大器,利用 Tm³⁺: ZBLAN 光 纤作为放大器的增益介质,获得了 150 mW 的 478 nm蓝光单频单横模激光输出。放大器装置图 如图 12 所示, 泵浦功率与输出功率的关系曲线图 如图 13 所示。研究者认为通过优化内包层中的 掺 Nd³⁺的浓度以充分抑制 800 nm 附近的激光, 可以实现 Tm³⁺: ZBLAN 光纤放大器的更高功率 输出。

Fig. 12 Experimental setup of the all-fiber blue laser amplifier^[66]

图 13 泵浦功率与 478 nm 蓝光功率关系曲线图(左上角:放大器输入与输出光谱图;右下角:GaN LD 的 单频运转扫描图)^[66]

Fig. 13 Measured output power of the 478 nm fiber amplifier as a function of the launched pump power (Upper left inset: optical spectra of the input and output of the fiber amplifier; lower right inset: single-frequency operation of the GaN diode laser confirmed with a scanning F-P interferometer)^[66]

2019年,Li 等^[67]报道了一种 550 nm 绿光自调 Q 掺 Ho³⁺ ZBLAN(Ho³⁺:ZBLAN)光纤激光器,其 重复 频 率 为 67.25 kHz、最 小 脉 冲 持 续 时 间 为 889 ns、最大能量脉冲为 264 nJ。该绿光激光器的 谐振腔由一根 15 cm 长的 Ho³⁺:ZBLAN 光纤和一 对光纤输入/输出耦合镜组成,Ho³⁺:ZBLAN 光纤 起到了增益介质和饱和吸收体的作用。

可以发现,虽然目前还未出现利用 ZBLAN 增 益光纤直接振荡实现蓝绿光单频激光输出的相关 报道,但相信通过进一步的优化谐振腔结构和 ZBLAN 增益光纤的性能参数,有很大的潜力从中 获得蓝绿光单频激光,并且有望利用 ZBLAN 光纤 放大器对蓝绿光单频激光光源(种子源)的功率实 现进一步放大。为了获得基于 ZBLAN 增益光纤 的蓝绿光单频光纤激光器,首先可从谐振腔的结 构入手。环形谐振腔相较于线性腔更加灵活,可 以使用较长的增益光纤,再加上选频结构,便可实 现较高功率的蓝绿光单频激光输出。对于线性腔 结构,由于结构特性,需要高掺杂浓度的 ZBLAN 增益光纤才能实现较高功率的蓝绿光单频激光输 出。所以ZBLAN增益光纤的性能参数,如掺杂浓 度、对泵浦波长的吸收系数、光纤纤芯掺杂组分、 芯包比(纤芯直径与包层直径之比)等,同样亟需 进一步的优化与提升。

5 结束语

本文从 SHG 手段产生蓝绿光单频激光、半导体材料直接激射产生蓝绿光单频激光等关键技术着 手,并结合本课题组在光纤基蓝绿光单频激光器方 面的研究工作,着重介绍了基于单频光纤激光器通 过 SHG 手段获得蓝绿光单频激光的研究进展。半 导体材料直接激射产生蓝绿光单频激光这种方式结 构简单,但是通过单频光纤激光器的 SHG 来获得 蓝绿光单频激光的这种方式亦具有不可取代的优 势,尤其是在输出功率、光束质量和波长灵活性等方 面。另外,当前通过 ZBLAN 增益光纤可直接获得 蓝绿光激光,相信通过进一步优化谐振腔结构以及 增益光纤的性能参数,有望利用 ZBLAN 增益光纤 直接振荡实现蓝绿光单频光纤激光输出。最后对蓝 绿光单频激光产生相关的研究工作进行了归纳总 结,如表 3 所示。

蓝绿光单频激光器虽然取得了长足的发展, 但是仍然存在一些不足:1)目前蓝绿光单频半导 体激光器的输出功率限制在百毫瓦以下,需要在 更高功率的输出性能上做进一步的提升;2)单频 固体激光器作为 SHG 的基频光源,其空间化结构 相对复杂、体积大、稳定性较差,亟需在紧凑以及 集成化等方面开展进一步研究;3)单频光纤激光 器作为 SHG 的基频光源具有光束质量好、泵浦效 率高、体积小、工作稳定等一系列优点,但往往基 频光源的功率限制了蓝绿光单频激光的输出功 率,因此基频光源的输出功率规模亟待进一步的 提高,尤其是 910~980 nm波段的单频光纤激光 器;4)改善非线性晶体的热管理、优化 SHG 结构 的设计等问题都是提高蓝绿光单频激光转换效率 与输出功率的关键点;5)激光噪声和线宽是蓝绿 光单频激光的一个重要性能特征,但目前鲜有研 究者进行深入研究。相信随着对蓝绿光单频激光 器的持续研究,未来将致力于实现更高功率、高光 束质量、窄线宽、低噪声、紧凑等性能,有助于进一 步推动蓝绿光单频激光器的发展和拓宽其应用 领域。

表 3 蓝绿光单频激光实现方式归纳总结表

	Technologies of realizing blue-green single-frequency laser					
Item		SHG		Directly lasing from	Directly lasing	
	Solid laser	Diode laser	Fiber laser	semiconductor materials	from gain fiber	
Type of source	Nd : YAG laser, Ti : sapphire laser, etc.	Tapered diode laser, etc.	Yb ³⁺ -doped fiber laser, Nd ³⁺ -doped fiber laser, etc.	InGaN-based LD, GaN- based LD, etc.	Pr ³⁺ /Yb ³⁺ /Tb ³⁺ -doped ZBLAN fiber laser, etc.	
Wavelength	532 nm, 455 nm, etc.	531 nm, 515 nm, 447 nm, etc.	532 nm, 509 nm, 489 nm, etc.	520 nm, 518 nm, 445 nm, etc.	550 nm, 480 nm, 478 nm, etc.	
Power	Hundreds of watts	Several watts	Tens of watts	Hundreds of milliwatts	Hundreds of milliwatts	
Advantages	Large output power scale	Compact structure, reliable performance and low cost	High beam quality, small size and stable operation	Small size, low power consumption, reliable performance and easy to integrate	ZBLAN fiber amplifier can further improve the output power scale of blue-green single-frequency laser	
Disadvan- tages	Complex structure, large size and poor power- stability	Limited Fundamental power scale	Limited Fundamental power scale	Limited output power scale	There are no report on the use of ZBLAN gain fiber to directly lasing blue-green single-frequency laser	
Develop- ment trend	Towards more compactness on structure and higher power- stability	Further improve the output power scale of single- frequency diode laser sources	Further improve the output power scale of single- frequency fiber laser sources	Towards higher output power and beam quality	Use ZBLAN gain fiber to directly lasing blue-green single-frequency laser	

参考文献

- [1] Ruan Y F, Xu Q, Lin L. Progress in the technology and materials of blue-green lasers [J]. Journal of Synthetic Crystals, 2002, 31(3): 266-276.
 阮永丰,许强,林林. 蓝绿光波段激光技术与材料的 研究进展[J]. 人工晶体学报, 2002, 31(3): 266-276.
- [2] Jiang D L, Yang Z, Liu G X, et al. A novel 450-nm blue laser system for surgical applications: efficacy of specific laser-tissue interactions in bladder soft tissue
 [J]. Lasers in Medical Science, 2019, 34(4): 807-813.
- [3] Nakatsu Y, Nagao Y, Kozuru K, et al. High-

efficiency blue and green laser diodes for laser displays [C] // SPIE OPTO. Proc SPIE 10918, Gallium Nitride Materials and Devices XIV, San Francisco, California, USA, 2019: 109181D.

- [4] Zong Q S, Bo Y, Guo C, et al. High brightness narrow-linewidth microsecond pulse green laser by frequency doubling of a master oscillator power amplifier Nd: YAG laser [J]. Optics & Laser Technology, 2018, 106: 294-298.
- [5] He J, Lin D, Xu L, et al. High-peak-power tunable source at 550 nm from a frequency-doubled Yb-doped fiber MOPA [J]. IEEE Photonics Technology Letters, 2019, 31(10): 727-730.
- [6] Soh D B S, Codemard C, Wang S, et al. A 980-nm Yb-doped fiber MOPA source and its frequency

doubling[J]. IEEE Photonics Technology Letters, 2004, 16(4): 1032-1034.

- [7] Kumar S C, Samanta G K, Ebrahim-Zadeh M. Highpower, single-frequency, continuous-wave secondharmonic-generation of ytterbium fiber laser in PPKTP and MgO: sPPLT [J]. Optics Express, 2009, 17(16): 13711-13726.
- [8] Fu S J, Shi W, Feng Y, et al. Review of recent progress on single-frequency fiber lasers [J]. Journal of the Optical Society of America B, 2017, 34(3): A49-A62.
- [9] Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 15 μm [J]. Optics Express, 2010, 18 (2): 1249-1254.
- [10] Xiao Y. Study on high-stability single-frequency fiber laser [D]. Guangzhou: South China University of Technology, 2015: 63-69.
 肖瑜.高稳定性单频光纤激光器研究 [D]. 广州: 华 南理工大学, 2015: 63-69.
- [11] Yin T C, Song Y F, Jiang X G, et al. 400 mW narrow linewidth single-frequency fiber ring cavity laser in 2 μm waveband [J]. Optics Express, 2019, 27(11): 15794-15799.
- [12] Xu S H, Yang Z M, Zhang W N, et al. 400 mW ultrashort cavity low-noise single-frequencyYb³⁺doped phosphate fiber laser [J]. Optics Letters, 2011, 36(18): 3708-3710.
- Zhu X S, Shi W, Zong J, et al. 976 nm singlefrequency distributed Bragg reflector fiber laser[J]. Optics Letters, 2012, 37(20): 4167-4169.
- [14] Zhang Y F, Yang C S, Li C, et al. Linearly frequency-modulated pulsed single-frequency fiber laser at 1083 nm[J]. Optics Express, 2016, 24(4): 3162-3167.
- [15] Zhang Y N, Li C, Xu S H, et al. A broad continuous temperature tunable DBR single-frequency fiber laser at 1064 nm [J]. IEEE Photonics Journal, 2016, 8 (2): 1-7.
- Yang C S, Zhao Q L, Feng Z M, et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser[J]. Optics Express, 2016, 24(26): 29794-29799.
- [17] Yang C S, Xu S H, Chen D, et al. 52 W kHzlinewidth low-noise linearly-polarized all-fiber singlefrequency MOPA laser[J]. Journal of Optics, 2016, 18(5): 055801.
- [18] Yang C S, Xu S H, Yang Q, et al. High-efficiency

watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers [J]. Applied Physics Express, 2014, 7(6): 062702.

- [19] Deng H Q, Chen D, Zhao Q L, et al. An efficient low-noise single-frequency 1033 nm Yb³⁺-doped MOPA phosphate fiber laser system [J]. Journal of Optics, 2017, 19(6): 065502.
- [20] Huang Z P, Deng H Q, Yang C S, et al. Selfinjection locked and semiconductor amplified ultrashort cavity single-frequency Yb³⁺-doped phosphate fiber laser at 978 nm[J]. Optics Express, 2017, 25(2): 1535-1541.
- [21] Yang C S. Study on high-performance high-power kHz linewidth single-frequency fiber laser and its application in frequency doubling [D]. Guangzhou: South China University of Technology, 2015: 85-106.
 杨昌盛.高性能大功率 kHz 线宽单频光纤激光器及 其倍频应用研究 [D] 广州, 华南理工大学 2015.

其倍频应用研究[D]. 广州:华南理工大学, 2015: 85-106.

- [22] Yang C S, Huang Z P, Deng H Q, et al. Ultracompact all-fiber narrow-linewidth single-frequency blue laser at 489 nm[J]. Journal of Optics, 2018, 20 (2): 025803.
- [23] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119.
- [24] Terhune R W, Maker P D, Savage C M. Optical harmonic generation in calcite [J]. Physical Review Letters, 1962, 8(10): 404-406.
- [25] Agrawal G P. Nonlinear fiber optics [M]. Beijing: World Publishing Corporation, 2005, 17-22.
- [26] Kang Z H. The investigation on temperature disperse of phase matching for second harmonic generation in IR nonlinear crystals [D]. Changchun: Jilin University, 2008: 12-21.
 康智慧. 几种红外非线性晶体倍频相位匹配温度色 散特性的研究[D]. 长春:吉林大学, 2008: 12-21.
- [27] Rota-Rodrigo S, Gouhier B, Dixneuf C, et al. Wattlevel green random laser at 532 nm by SHG of a Ybdoped fiber laser[J]. Optics Letters, 2018, 43(17): 4284-4287.
- [28] He C J, Yu H J, Zhang J Y, et al. High efficiency single-pass SHG of low power CWML and QML laser in an MgO: PPLN[J]. Optics & Laser Technology, 2018, 106: 197-201.
- [29] Wiechmann W, Liu L, Kubota S. Efficient 1 watt single frequency CW green generation from an

intracavity-doubled diode-pumped Nd: YVO4 laser [J]. Advanced Solid State Lasers, 1995, 24: 96-97.

- [30] Martin K I, Clarkson W A, Hanna D C. 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd: YAG ring laser [J]. Optics Letters, 1996, 21(12): 875-877.
- Lu T T, Wang J T, Zhu X L, et al. Highly efficient single longitudinal mode-pulsed green laser [J]. Chinese Optics Letters, 2013, 11(5): 051402.
- Li F Q, Li H J, Lu H D. Realization of a tunable 455. 5-nm laser with low intensity noise by intracavity frequency-doubled Ti: sapphire laser[J]. IEEE Journal of Quantum Electronics, 2016, 52(2): 1-6.
- [33] Li F Q, Li H J, Lu H D, et al. High-power tunable single-frequency 461 nm generation from an intracavity doubled Ti: sapphire laser with PPKTP [J]. Laser Physics, 2016, 26(2): 025802.
- [34] Li F Q, Zhao B, Wei J, et al. Continuously tunable single-frequency 455 nm blue laser for high-state excitation transition of cesium [J]. Optics Letters, 2019, 44(15): 3785-3788.
- [35] Wang Y T, Liu J L, Liu Q, et al. Stable continuouswave single-frequency Nd: YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion[J]. Optics Express, 2010, 18 (12): 12044-12051.
- [36] Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode [J]. Optics Letters, 2010, 35(22): 3742-3744.
- [37] Hayasaka K, Zhang Y, Kasai K. Generation of 22.8 mW single-frequency green light by frequency doubling of a 50-mW diode laser[J]. Optics Express, 2004, 12(15): 3567-3572.
- [38] Kozlovsky W J, Risk W P, Lenth W, et al. Blue light generation by resonator-enhanced frequency doubling of an extended-cavity diode laser [J]. Applied Physics Letters, 1994, 65(5): 525-527.
- [39] Jensen O B, Andersen P E, Sumpf B, et al. 15 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser [J]. Optics Express, 2009, 17(8): 6532-6539.
- Zhang Y, Liu J H, Wu J Z, et al. Single-frequency tunable 447. 3 nm laser by frequency doubling of tapered amplified diode laser at cesium D₁ line [J]. Optics Express, 2016, 24(17): 19769-19775.

- [41] Samanta G K, Kumar S C, Devi K, et al. Multicrystal, continuous-wave, single-pass secondharmonic generation with 56% efficiency[J]. Optics Letters, 2010, 35(20): 3513-3515.
- [42] Hansen A K, Tawfieq M, Jensen O B, et al. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals [J]. Optics Express, 2015, 23(12): 15921-15934.
- [43] Jensen O B, Hansen A K, Müller A, et al. Efficient generation of 3. 5 W laser light at 515 nm by frequency doubling a single-frequency high power DBR tapered diode laser [J]. Optics Communications, 2017, 392: 167-170.
- [44] Sinha S, Hum D S, Urbanek K E, et al. Roomtemperature stable generation of 19Watts of singlefrequency 532-nm radiation in a periodically poled lithium tantalate crystal [J]. Journal of Lightwave Technology, 2008, 26(24): 3866-3871.
- [45] Samanta G K, Kumar S C, Ebrahim-Zadeh M. Stable, 96 W, continuous-wave, single-frequency, fiber-based green source at 532 nm [J]. Optics Letters, 2009, 34(10): 1561-1563.
- [46] Kumar S C, Samanta G K, Devi K, et al. Highefficiency, multicrystal, single-pass, continuouswave second harmonic generation [J]. Optics Express, 2011, 19(12): 11152-11169.
- [47] Shukla M K, Kumar S, Das R. Single-pass, multiwatt second-harmonic-generation in congruent and stoichiometric LiTaO₃ [C] // 2015 IEEE Photonics Conference (IPC), October 4-8, 2015. Reston, VA. IEEE, 2015: 27(13): 1379-1382.
- [48] Qian J P, Zhang L, Jiang H W, et al. 2 W singlefrequency, low-noise 509 nm laser via single-pass frequency doubling of an ECDL-seeded Yb fiber amplifier[J]. Applied Optics, 2018, 57(29): 8733-8737.
- [49] Fang Q, Xu Y, Fu S J, et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm[J]. Optics Letters, 2016, 41(8): 1829-1832.
- [50] Rota-Rodrigo S, Gouhier B, Laroche M, et al. Wattlevel single-frequency tunable neodymium MOPA fiber laser operating at 915-937 nm [J]. Optics Letters, 2017, 42(21): 4557-4560.
- [51] Leconte B, Gilles H, Robin T, et al. 7. 5 W blue light generation at 452 nm by internal frequency doubling of a continuous-wave Nd-doped fiber laser
 [J]. Optics Express, 2018, 26(8): 10000-10006.

- [52] Erbert G, Crump P, Decker J, et al. Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration [C] // SPIE LASE. Proc SPIE 10514, High-Power Diode Laser Technology XVI, San Francisco, California, USA, 2018, 10514: 105140T.
- [53] Wang H L, Cui J, Shen A D, et al. Blue/green diode laser[J]. Laser & Optoelectronics Progress, 1992, 29(10): 7-12.
 王海龙,崔捷,沈爱东,等. 蓝绿光半导体激光器
- [54] Nakamura S. GaN-based blue/green semiconductor laser [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(2): 435-442.

[J]. 激光与光电子学进展, 1992, 29(10): 7-12.

- [55] Haase M A, Qiu J, DePuydt J M, et al. Blue-green laser diodes [J]. Applied Physics Letters, 1991, 59 (11): 1272-1274.
- [56] Fang Z J, Cai H W, Chen G T, et al. Single-frequency diode lasers: principle, technology, and applications [M]. Shanghai: Shanghai Jiaotong University Press, 2015: 95-127.
 方祖捷, 蔡海文, 陈高庭, 等. 单频半导体激光

器——原理、技术和应用[M].上海:上海交通大学 出版社,2015:95-127.

- [57] Chen Y H, Lin W C, Chen H Z, et al. Singlefrequency external cavity green diode laser[J]. IEEE Photonics Journal, 2017, 9(6): 1-7.
- [58] Chen Y H, Lin W C, Shy J T, et al. Iodinestabilized single-frequency green InGaN diode laser [J]. Optics Letters, 2018, 43(1): 126-129.
- [59] Kang J H, WenzelH, Hoffmann V, et al. DFB laser diodes based on GaN using 10th order laterally

coupled surface gratings [J]. IEEE Photonics Technology Letters, 2018, 30(3): 231-234.

- [60] Chen M H, Hsiao S C, Shen K T, et al. Single longitudinal mode external cavity blue InGaN diode laser[J]. Optics & Laser Technology, 2019, 116: 68-71.
- [61] Liang F, Zhao D G, Jiang D S, et al. Suppression of optical field leakage in GaN-based green laser diode using graded-indium n-In_x Ga_{1-x} N lower waveguide
 [J]. Superlattices and Microstructures, 2019, 132: 106153.
- [62] Zhu X S, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in OptoElectronics, 2010, 2010: 1-23.
- [63] Luo Z Q, Ruan Q J, Zhong M, et al. Compact self-Q-switched green upconversion Er: ZBLAN all-fiber laser operating at 5434 nm[J]. Optics Letters, 2016, 41(10): 2258-2261.
- [64] Grubb S G, Bennett K W, Cannon R S, et al. CW room-temperature blue upconversion fibre laser [J]. Electronics Letters, 1992, 28(13): 1243-1244.
- [65] Xie P, Gosnell T R. Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions [J]. Optics Letters, 1995, 20(9): 1014-1016.
- [66] Mollaee M, Zhu X S, Zong J, et al. Single-frequency blue laser fiber amplifier [J]. Optics Letters, 2018, 43(3): 423-426.
- [67] Li W S, Wu J J, Cai Z P, et al. Directly blue diodepumped green self-Q-switched Ho³⁺-doped fluoride all-fiber laser at 550 nm [J]. Journal of Lightwave Technology, 2019, 37(22): 5727-5732.